

Лосиноостровский электротехнический завод филиал

Открытого акционерного общества «Объединенные электротехнические заводы» ЛОЭТЗ – филиал ОАО «ЭЛТЕЗА»

УРАВНИВАЮЩИЙ ТРАНСФОРМАТОР УТ3

Этикетка 36491-00-00ЭТ

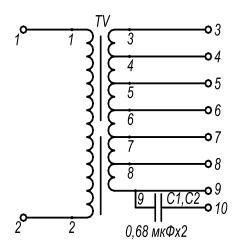
Россия, 129344, г. Москва

ул. летчика Бабушкина, владение 1, строение 1-33

тел.: (495)471-40-11 факс: (495)471-26-87 e-mail: <u>loetz@loetz.ru</u> www.loetz.ru

Трансформатор уравнивающий УТЗ, предназначен для уравнивания напряжений на приемных концах рельсовых цепей ТРЦЗ.

Климатическое исполнение У, категория 2 по ГОСТ 15150-69.


Допустимый ток обмотки до 0,5 А.

Уравнивающий трансформатор УТЗ сертифицирован.

Сертификат соответствия № СДС ОПЖТ RU.Б.0151.

Действителен до 10 августа 2018г.

СХЕМА ЭЛЕКТРИЧЕСКАЯ ПРИНЦИПИАЛЬНАЯ УТЗ

1. ОСНОВНЫЕ ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ.

1.1. Величина входного сопротивления УТЗ на выводах 1–2 при величинах сигналов 0,5 В частотами и установленными перемычками в соответствии с указанными в табл. 1 должна быть не менее:

при нормальных климатических условиях — 2000,0 Ом

при крайних значениях температур — 1000,0 Ом

Таблица 1

Частота сигнала, Гц	Перемычки между выводами УТ3
420	3–10
480	4–10
580	5–10
720	6–10
780	7–10

1.2. Коэффициенты трансформации УТЗ относительно выводов 1-2 должны соответствовать данным табл. 2.

Таблица 2

Выводы	3–9	4–9	5–9	6–9	7–9	8–9
Коэффициент трансформации	1,20±0,06	1,37±0,07	1,65±0,08	2,03±0,10	2,44±0,12	3,39±0,17

- 1.3. Электрическое сопротивление изоляции между выводами 1-2 и 3-9 должно быть не менее 50 МОм.
- 1.4. Электрическая прочность изоляции между выводами 1-2 и 3-9 должна выдерживать без пробоя от источника мощностью не менее 0,25 кВА испытательное напряжение 500 В переменного тока частотой 50 Гц.
 - 1.5. Драгоценных металлов не содержит.

2. РЕСУРСЫ, СРОКИ СЛУЖБЫ И ХРАНЕНИЯ, ГАРАНТИИ ИЗГОТОВИТЕЛЯ.

2.1. Ресурс изделия до первого среднего ремонта 80000 часов в течение срока службы 20 лет, в том числе срок хранения 6 месяцев в упаковке изготовителя в складских помещениях.

Указанные ресурсы, сроки службы и хранения действительны при соблюдении потребителем требований действующей эксплуатационной документации.

- 2.2. Гарантии изготовителя.
- 2.2.1. Завод-изготовитель гарантирует соответствие УТЗ требованиям технических условий на это изделие при соблюдении потребителем условий эксплуатации и хранения, установленных техническими условиями ТУ 32ЦШ 3740-93.
- 2.2.2. Гарантийный срок эксплуатации УТЗ 36 месяцев со дня ввода изделия в эксплуатацию, при условии предварительного хранения не более 6 месяцев со дня изготовления.

3. СВИДЕТЕЛЬСТВО ОБ УПАКОВЫВАНИИ.

УТЗ 36491-00-	00 заводской номер $_{\cdot}$	
•	3 согласно требован и ТУ 32ЦШ 3740-93.	иям, предусмотренным техниче
должность	личная подпись	расшифровка подписи
год, месяц, ч	исло	
4	. СВИДЕТЕЛЬСТЕ	во о приемке.
УТЗ 36491-00-	00 заводской номер	
_	инят в соответствии (93 и признан годным	с техническими условиями для эксплуатации.
Начал	ьник ОТК	
МП		
личная подпи	ись ра	асшифровка подписи
год, месяц, число	_	

5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ.

- 5.1. УТЗ рассчитан для работы в условиях умеренного климата в диапазоне рабочих температур от минус 40 до +65 °C и относительной влажности 100% при температуре 25 °C.
- 5.2. УТЗ выдерживает вибрационные нагрузки в диапазоне частот от 5 до 100 Гц с ускорением 1g.
- 5.3. УТЗ по электробезопасности отвечает требования ГОСТ 12.2.007.0-75 для изделий 0 класса.
- 5.4. Проверку величин входного сопротивления производят путем измерения напряжения на выводах 1-2 и эталонном сопротивлении при частотах и перемычках, указанных в табл. 1 (рис. 2). При этом устанавливают величину напряжения на выводах 1-2 УТЗ, равную 0,5 В, контроль по вольтметру V1. Вольтметр V2 подключают к магазину сопротивлений PR для измерения напряжений переменного тока.

Величину сопротивления определяют по формуле:

$$Z_{1-2} = \left(\frac{V1}{V2}\right) \cdot 100, \quad O_M$$

5.5. Проверку коэффициента трансформации проводят на стенде схемы рис. 2 на частоте 420 Гц и установленной перемычке 3-10. При этом устанавливают величину напряжения на выводах 1-2 УТЗ, равную 0,5 В, контроль по вольтметру V1. Вольтметр V2 поочередно подключают к выводам 3-9, 4-9, 5-9, 6-9, 7-9 и 8-9 УТЗ и определяют коэффициент трансформации как отношение показаний вольтметров V1/V2.

Погрешность измерения напряжения ±2%.

- 5.6. В одной упаковке поставляется по 6 шт. УТ3.
- 5.7. Рекомендации по применению.

Уравнивающий трансформатор УТ3 применяется для уравнивания напряжения на приемных концах рельсовых цепей ТРЦ3 и устанавливается на входе приемника рельсовой цепи меньшей длины. Выводы 1-2 УТ3 являются вторичными и подключаются к входу приемника рельсовой цепи.

Выводы первичной обмотки 3-9, к которым подключается кабель, выбираются в зависимости от требуемых коэффициентов трансформации (см. табл. 3).

Таблица 3

Выводы первичной обмотки	Коэффициенты трансформации N
3–9	1,20
4–9	1,37
5–9	1,65
6–9	2,03
7–9	2,44
3–6	2,90
8–9	3,39
4–6	4,16

Настройка УТЗ на рабочую частоту рельсовой цепи осуществляется установкой перемычки в соответствии с табл. 4.

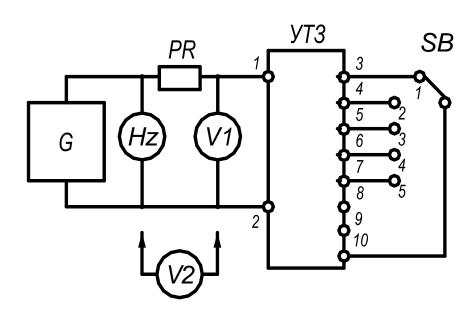
Таблица 4

Частота рельсовой цепи, Гц	Перемычки между выводами УТ3
420	10–3
480	10–4
580	10–5
720	10–6
780	10–7

Работая в цепи эквивалентного генератора тока, которым служит приемный конец рельсовой цепи, уравнивающий трансформатор, являясь повышающим по расположению обмоток, фактически обеспечивает снижение напряжения на входе приемника.

УТЗ следует устанавливать только в тех случаях, когда это приводит к уменьшению количества рельсовых цепей или позволяет реализовать минимально допустимое сопротивление балласта в рельсовой цепи большей длины.

Методика расчета рельсовой цепи с общим питающим концом и составление регулировочных таблиц с применением УТЗ заключается в следующем:


- 1. Производится расчет рельсовой цепи большей длины на минимально допустимое (или нормативное) сопротивление балласта. В результате определяют требуемое напряжение питания этой рельсовой цепи $U_{\pi 1}$ и соответствующее ему сопротивление балласта R_{μ} .
- 2. Рассчитывается рельсовая цепь меньшей длины на сопротивление балласта $R_{\rm u}$, полученное в п.1; определяют требуемое напряжение питания $U_{\rm n2}$.
- 3. Определяют расчетный коэффициент трансформации уравнивающего трансформатора как:

$$N = \frac{U_{\pi 1}}{U_{\pi 2}}$$

4. По табл.3 выбирают ближайший к расчетному фактический коэффициент N.

- 5. Определяют напряжения на приемниках обеих рельсовых цепей при напряжении питания $U_n=U_{n1}$ и сопротивлении балласта, равным бесконечности. Получают верхнюю границу напряжения на приемнике рельсовой цепи большой длины.
- 6. Разделив на N полученное напряжение на приемнике рельсовой цепи меньшей длины, получают его верхнюю границу при бесконечном сопротивлении балласта.

СХЕМА ПРОВЕРКИ УТЗ

G – генератор сигналов Γ 3-123 ($Z_{\text{вых}}$ <600 Ом);

HZ – частотомер электронно-счетный Ч3-63;

V1, V2 – милливольтметр В3-57;

PR – магазин сопротивления Р33 R=100 Ом;

SB – переключатель $\Pi\Gamma$.